skip to main content


Search for: All records

Creators/Authors contains: "St. Clair, Samuel B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Martínez-Yrízar, Angelina (Ed.)
    Climate change is causing larger wildfires and more extreme precipitation events in many regions. As these ecological disturbances increasingly coincide, they alter lateral fluxes of sediment, organic matter, and nutrients. Here, we report the stream chemistry response of watersheds in a semiarid region of Utah (USA) that were affected by a megafire followed by an extreme precipitation event in October 2018. We analyzed daily to hourly water samples at 10 stream locations from before the storm event until three weeks after its conclusion for suspended sediment, solute and nutrient concentrations, water isotopes, and dissolved organic matter concentration, optical properties, and reactivity. The megafire caused a ~2,000-fold increase in sediment flux and a ~6,000-fold increase in particulate carbon and nitrogen flux over the course of the storm. Unexpectedly, dissolved organic carbon (DOC) concentration was 2.1-fold higher in burned watersheds, despite the decreased organic matter from the fire. DOC from burned watersheds was 1.3-fold more biodegradable and 2.0-fold more photodegradable than in unburned watersheds based on 28-day dark and light incubations. Regardless of burn status, nutrient concentrations were higher in watersheds with greater urban and agricultural land use. Likewise, human land use had a greater effect than megafire on apparent hydrological residence time, with rapid stormwater signals in urban and agricultural areas but a gradual stormwater pulse in areas without direct human influence. These findings highlight how megafires and intense rainfall increase short-term particulate flux and alter organic matter concentration and characteristics. However, in contrast with previous research, which has largely focused on burned-unburned comparisons in pristine watersheds, we found that direct human influence exerted a primary control on nutrient status. Reducing anthropogenic nutrient sources could therefore increase socioecological resilience of surface water networks to changing wildfire regimes. 
    more » « less
  2. Abstract

    Wildfires are altering ecosystems globally as they change in frequency, size, and severity. As wildfires change vegetation structure, they also alter moisture inputs and energy fluxes which influence snowpack and hydrology. In unburned forests, snow has been shown to accumulate more in small clearings or in stands with low to moderate forest densities. Here we investigate whether peak snowpack varies with burn severity or percent overstory tree mortality post-fire in a mid-latitude, subalpine forest. We found that peak snowpack across the burn severity gradients increased 15% in snow-water equivalence (SWE) and 17% in depth for every 20% increase in overstory tree mortality due to burn severity. Snowpack quantity varied greatly between the two winter seasons sampled in this study with 114% more snow in 2016 versus 2015, yet the effect of burn severity on snowpack remained consistent. These data support previous studies showing increases in peak snow depth and SWE in burned forests but for the first time provides novel insights into how snow depth and SWE change as a function of burn severity. We conclude that changes not only in the frequency and size of wildfires, but also in the severity, can alter peak snow depth and SWE, with important potential implications for watershed hydrology.

     
    more » « less